242 research outputs found

    The Fourier-based Synchrosqueezing Transform

    No full text
    The short-time Fourier transform (STFT) and continuous wavelet transform (CWT) are intensively used to analyze and process multicomponent signals, ie superpositions of mod- ulated waves. The synchrosqueezing is a post-processing method which circumvents the uncertainty relations, inherent to these linear transforms, by reassigning the coefficients in scale or frequency. Originally introduced in the setting of the continuous wavelet transform, it provides a sharp, con- centrated representation, while remaining invertible. This technique received a renewed interest with the recent publi- cation of an approximation result, which provides guarantees for the decomposition of a multicomponent signal. This paper adapts the formulation of the synchrosqueezing to the STFT, and states a similar theoretical result. The emphasis is put on the differences with the CWT-based synchrosqueezing, and all the content is illustrated through numerical experiments

    The monogenic synchrosqueezed wavelet transform: a tool for the decomposition/demodulation of AM–FM images

    Get PDF
    The synchrosqueezing method aims at decomposing 1D functions into superpositions of a small number of “Intrinsic Modes”, supposed to be well separated both in time and frequency. Based on the unidimensional wavelet transform and its reconstruction properties, the synchrosqueezing transform provides a powerful representation of multicomponent signals in the time–frequency plane, together with a reconstruction of each mode. In this paper, a bidimensional version of the synchrosqueezing transform is defined, by considering a well-adapted extension of the concept of analytic signal to images: the monogenic signal. We introduce the concept of “Intrinsic Monogenic Mode”, that is the bidimensional counterpart of the notion of Intrinsic Mode. We also investigate the properties of its associated Monogenic Wavelet Decomposition. This leads to a natural bivariate extension of the Synchrosqueezed Wavelet Transform, for decomposing and processing multicomponent images. Numerical tests validate the effectiveness of the method on synthetic and real images

    On the Mode Synthesis in the Synchrosqueezing Method

    Get PDF
    Publication in the conference proceedings of EUSIPCO, Bucharest, Romania, 201

    Analyse de signaux multicomposantes : contributions à la décomposition modale Empirique, aux représentations temps-fréquence et au Synchrosqueezing

    Get PDF
    Many signals from the physical world can be modeled accurately as a superposition of amplitude- and frequency-modulated waves. This includes audio signals (speech, music), medical data (ECG) as well as temporal series (temperature or electric consumption). This thesis deals with the analysis of such signals, called multicomponent because they contain several modes. The techniques involved allow for the detection of the different modes, their demodulation (ie, determination of their instantaneous amplitude and frequency) and reconstruction. The thesis uses the well-known framework of time-frequency and time-scale analysis through the use of the short-time Fourier and the continuous wavelet transforms. We will also consider a more recent algorithmic method based on the symmetry of the enveloppes : the empirical mode decomposition. The first contribution proposes a new way to avoid the iterative ``Sifting Process'' in the empirical mode decomposition, whose convergence and stability are not guaranteed. Instead, one uses a constrained optimization step together with an enhanced detection of the local extrema of the high-frequency mode. The second contribution analyses multicomponent signals through the short-time Fourier transform and the continuous wavelet transform, taking advantage of the ``ridge'' structure of such signals in the time-frequency or time-scale planes. More precisely, we propose a new reconstruction method based on local integration, adapted to the local frequency modulation. Some theoretical guarantees for this reconstruction are provided, as well as an application to multicomponent signal denoising. The third contribution deals with the quality of the time-frequency representation, using the reassignment method and the synchrosqueezing transform: we propose two extensions of the synchrosqueezing, that enable mode reconstruction while remaining efficient for strongly modulated waves. A generalization of the synchrosqueezing in dimension 2 is also proposed, based on the so-called monogenic wavelet transform.Les superpositions d'ondes modulées en amplitude et en fréquence (modes AM--FM) sont couramment utilisées pour modéliser de nombreux signaux du monde réel : cela inclut des signaux audio (musique, parole), médicaux (ECG), ou diverses séries temporelles (températures, consommation électrique). L'objectif de ce travail est l'analyse et la compréhension fine de tels signaux, dits "multicomposantes" car ils contiennent plusieurs modes. Les méthodes mises en oeuvre vont permettre de les représenter efficacement, d'identifier les différents modes puis de les démoduler (c'est-à-dire déterminer leur amplitude et fréquence instantanée), et enfin de les reconstruire. On se place pour cela dans le cadre bien établi de l'analyse temps-fréquence (avec la transformée de Fourier à court terme) ou temps-échelle (transformée en ondelettes continue). On s'intéressera également à une méthode plus algorithmique et moins fondée mathématiquement, basée sur la notion de symétrie des enveloppes des modes : la décomposition modale empirique. La première contribution de la thèse propose une alternative au processus dit ``de tamisage'' dans la décomposition modale empirique, dont la convergence et la stabilité ne sont pas garanties. \`A la place, une étape d'optimisation sous contraintes ainsi qu'une meilleure détection des extrema locaux du mode haute fréquence garantissent l'existence mathématique du mode, tout en donnant de bons résultats empiriques. La deuxième contribution concerne l'analyse des signaux multicomposantes par la transformée de Fourier à court terme et à la transformée en ondelettes continues, en exploitant leur structure particulière ``en ridge'' dans le plan temps-fréquence. Plus précisément, nous proposons une nouvelle méthode de reconstruction des modes par intégration locale, adaptée à la modulation fréquentielle, avec des garanties théoriques. Cette technique donne lieu à une nouvelle méthode de débruitage des signaux multicomposantes. La troisième contribution concerne l'amélioration de la qualité de la représentation au moyen de la ``réallocation'' et du ``synchrosqueezing''. Nous prolongeons le synchrosqueezing à la transformée de Fourier à court terme, et en proposons deux extensions inversibles et adaptées à des modulations fréquentielles importantes, que nous comparons aux méthodes originelles. Une généralisation du synchrosqueezing à la dimension 2 est enfin proposée, qui utilise le cadre de la transformée en ondelettes monogène

    Contributions au traitement des images multivariées

    Get PDF
    Ce mémoire résume mon activité pédagogique et scientifique en vue de l’obtention de l’habilitation à diriger des recherches

    Time-Frequency Ridge Analysis Based on the Reassignment Vector

    Get PDF
    International audienceThis paper considers the problem of detecting and estimating AM/FM components in the time-frequency plane. It introduces a new algorithm to estimate the ridges corresponding to the instantaneous frequencies of the components, and to segment the time-frequency plane into different `basins of attraction', each basin corresponding to one mode. The technique is based on the structure of the reassignment vector, which is commonly used for sharpening time-frequency representations. Compared with previous approaches, this new method does not need extra parameters, exhibits less sensitivity to the choice of the window and shows better reconstruction performance. Its effectiveness is demonstrated on simulated and real datasets

    Symmetrical EEG-FMRI Imaging by Sparse Regularization

    Get PDF
    International audienceThis work considers the problem of brain imaging using simultaneously recorded electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). To this end, we introduce a linear coupling model that links the electrical EEG signal to the hemodynamic response from the blood-oxygen level dependent (BOLD) signal. Both modalities are then symmetrically integrated, to achieve a high resolution in time and space while allowing some robustness against potential decoupling of the BOLD effect. The novelty of the approach consists in expressing the joint imaging problem as a linear inverse problem, which is addressed using sparse regularization. We consider several sparsity-enforcing penalties, which naturally reflect the fact that only few areas of the brain are activated at a certain time, and allow for a fast optimization through proximal algorithms. The significance of the method and the effectiveness of the algorithms are demonstrated through numerical investigations on a spherical head model

    Learning the Proximity Operator in Unfolded ADMM for Phase Retrieval

    Full text link
    This paper considers the phase retrieval (PR) problem, which aims to reconstruct a signal from phaseless measurements such as magnitude or power spectrograms. PR is generally handled as a minimization problem involving a quadratic loss. Recent works have considered alternative discrepancy measures, such as the Bregman divergences, but it is still challenging to tailor the optimal loss for a given setting. In this paper we propose a novel strategy to automatically learn the optimal metric for PR. We unfold a recently introduced ADMM algorithm into a neural network, and we emphasize that the information about the loss used to formulate the PR problem is conveyed by the proximity operator involved in the ADMM updates. Therefore, we replace this proximity operator with trainable activation functions: learning these in a supervised setting is then equivalent to learning an optimal metric for PR. Experiments conducted with speech signals show that our approach outperforms the baseline ADMM, using a light and interpretable neural architecture.Comment: 10 pages, 5 figures, submitted to IEEE SP
    • …
    corecore